SmI₂-Promoted Deacetoxylation of O-Acetylsugar Lactones. An Easy Access to Deoxysugar Lactones

Junji INANAGA,* Junko KATSUKI,† and Masaru YAMAGUCHI†

Institute for Molecular Science, Myodaiji, Okazaki 444

†Department of Chemistry, Kyushu University 33, Hakozaki, Fukuoka 812

Selective deacetoxylation of O-acetylsugar lactones and O-acetyl-3-deoxysugar lactones was accomplished at room temperature with the aid of SmI₂ in the presence of pivalic acid or acetic acid to give the corresponding α,β -unsaturated lactones and saturated lactones (2,3-dideoxysugar derivatives), respectively.

Deoxysugars, especially deoxysugar lactones have recently been received much attention because of not only their interesting biological activities¹⁾ but also the usefulness in the natural product synthesis as chiral non-racemic intermediates with well-defined stereochemistry at numerous chiral centers.²⁾

We report here a convenient method to obtain 2,3-dideoxysugar lactones from natural carbohydrates via site-selective deacetoxylation of *O*-acetylsugar lactones by means of SmI₂-promoted electron transfer reaction.

$$\frac{\text{Sml}_2 \text{ (3-4eq), pivalic acid}}{\text{rt, 30 min}} \qquad \frac{\text{O}}{\text{O}} \qquad \text{(quant.)} \qquad \text{(1)}$$

$$\frac{\text{R}}{\text{AcO OAc}} \qquad \frac{\text{Sml}_2, \text{H}^+}{\text{rt, 20 min}} \qquad \frac{\text{R}}{\text{AcO}} \qquad \text{(A)} \qquad \text{(B)}$$

3-Deoxysugar lactones (6-10), prepared in good to excellent yields from the corresponding sugar lactones (1-5) by treating with hydrogen (1 atm) in the presence of triethylamine and $Pd(OH)_2$ catalyst,³⁾ were cleanly reduced by SmI_2 to give the corresponding 2,3-dideoxy derivatives in quantitative yields. (Eq. 1)⁴⁾

When O-acetylsugar lactones (1-5) were subjected to the present reduction conditions, the corresponding α,β -unsaturated lactones (B) were obtained as sole or major products with the concomitant formation of 2-deoxy derivatives (A). (Eq. 2)⁴) The results are summarized in Table 1.

The reaction seems to proceed through the formation of the lactone enolate intermediate (C) followed by

O-Acetylsugar	Droton governo	Product		- Yield ^{b)} /%
lactone	Proton source	Α	В	r leid 7%
AcO OAc 1	pivalic acid AcOH	AcO AcO	AcO	47 (54) ^{c)} 30 (63) ^{d)}
AcO OAc 2	pivalic acid AcOH		AcO OAc	67 (72) 60 (64)
OAC OAC 3	pivalic acid AcOH		OAC OAC	58 (93) 60 (70)
OAC OAC 4	pivalic acid AcOH	OAC OAC OAC OAC	OAC OAC OAC	54 (75) ^{e)} 67 (75) ^{d)}
AcO OAc 5	pivalic acid AcOH	AcO OAC O	AcO O O	47 ^{f)} 68 ^{d)}

Table 1. Sml₂-Promoted Deacetoxylation of O-Acetylsugar Lactones (1-5)^{a)}

a) To a solution of O-acetylsugar lactone (1-5, 0.1 mmol) and pivalic acid or acetic acid (0.25 mmol) in THF (2 ml) was added a SmI₂-THF solution (0.1 mol dm⁻³, 3-4 ml) and the mixture was stirred at room temperature for 20 min. b) Combined isolated yield. The yield based on recovered starting material is indicated in parentheses. c) A / B = 36 / 64. d) The α , β -unsaturated lactone (B) was the only product. e) A / B = 42 / 58. f) A / B = 50 / 50.

elimination of its 3-acetoxyl group. To our surprise, however, the use of acetic acid to suppress the elimination process $(C \rightarrow B)$ by rapid protonation rather promoted the elimination thus yielding the butenolide and pentenolide derivatives exclusively. (See Table 1)

$$\begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Although the present reduction did not give satisfactory results for the selective formation of 2-deoxysugar lactones, it is rather fruitful from the synthetic point of view that it offers a highly efficient route to sugar-derived conjugated lactones which are not so conveniently accessible by any other available methodologies.

References

- 1) For example, see O. Uchikawa, N. Okukado, T. Sakata, K. Arase, and K. Terada, *Bull. Chem. Soc. Jpn.*, 61, 2025 (1988).
- 2) S. Hanessian, "Total Synthesis of Natural Products: The 'Chiron' Approach," in "Organic Chemistry Series, Vol. 3," ed by J. E. Baldwin, Pergamon Press (1983); S. Hanessian, Aldrichimica Acta, 22, 3 (1989).
- 3) K. Bock, I. Lundt, and C. Pederson, *Acta Chem. Scand.*, B, 35, 155 (1981); S. V. Attwood and A. G. M. Barrett, *J. Chem. Soc.*, *Perkin Trans. 1*, 1984, 1315.
- 4) The addition of HMPA, which was essential for the deacetoxylation of α-acetoxyesters [K. Kusuda, J. Inanaga, and M. Yamaguchi, *Tetrahedron Lett.*, 30, 2945 (1989)], rather decreased the yield in this case.

(Received April 10, 1991)